A Primer on Eulerian Computational Fluid Dynamics for Astrophysics
نویسنده
چکیده
We present a pedagogical review of some of the methods employed in Eulerian computational fluid dynamics (CFD). Fluid mechanics is governed by the Euler equations, which are conservation laws for mass, momentum, and energy. The standard approach to Eulerian CFD is to divide space into finite volumes or cells and store the cell-averaged values of conserved hydro quantities. The integral Euler equations are then solved by computing the flux of the mass, momentum, and energy across cell boundaries. We review both first-order and second-order flux assignment schemes. All linear schemes are either dispersive or diffusive. The nonlinear, second-order accurate total variation diminishing (TVD) approach provides high resolution capturing of shocks and prevents unphysical oscillations. We review the relaxing TVD scheme, a simple and robust method to solve systems of conservation laws like the Euler equations. A 3-D relaxing TVD code is applied to the Sedov-Taylor blast wave test. The propagation of the blast wave is accurately captured and the shock front is sharply resolved. We apply a 3-D self-gravitating hydro code to simulating the formation of blue straggler stars through stellar mergers and present some numerical results. A sample 3-D relaxing TVD code is provided in the appendix. Subject headings: hydrodynamics–methods: numerical
منابع مشابه
CFD Simulation of Gas-Solid Two-Phase Flow in Pneumatic Conveying of Wheat
Computational Fluid Dynamics (CFD) simulations of gas-solid flow through a positive low-pressure pneumatic conveyor were performed using Eulerian-Eulerian framework. Pressure drop in pneumatic conveying pipelines, creation and destruction of plugs along the horizontal and vertical pipes, effect of 90° elbows and U-bends on cross-section concentrations, and rope formation and dispersion were...
متن کاملCFD Simulation of UV Disinfection Reactor for Applesauce with a Low UV Absorption Coefficient
In this study, a Computational Fluid Dynamics (CFD) model was developed to evaluate ultraviolet disinfection applesauce reactor. To simulate UV reactors, three sets of equations, including hydrodynamics, radiation and species mass conservation were solved simultaneously. The Realizable k-e turbulence model and the discrete ordinate method were used to find the UV radiation profile through the r...
متن کاملComputational fluid dynamics simulation of the flow patterns and performance of conventional and dual-cone gas-particle cyclones
One of the main concerns of researchers is the separation of suspended particles in a fluid. Accordingly, the current study numerically investigated the effects of a conical section on the flow pattern of a Stairmand cyclone by simulating single-cone and dual-cone cyclones. A turbulence model was used to analyze incompressible gas-particle flow in the cyclone models, and the Eulerian–Lagrangian...
متن کاملCFD Simulation of Porosity and Particle Diameter Influence on Wall-to-Bed Heat Transfer in Trickle Bed Reactors
Wall-to-bed (or wall-to-fluid) heat transfer issues in trickle bed reactors (TBR) has an important impact on operation and efficiency in this category of reactors. In this study, the hydrodynamic and thermal behavior of trickle bed reactors was simulated by means of computational fluid dynamics (CFD) technique. The multiphase behavior of trickle bed reactor was studied by the implementation of ...
متن کاملComputational fluid dynamics study and GA modeling approach of the bend angle effect on thermal-hydraulic characteristics in zigzag channels
In the study, the thermal-hydraulic performance of the zigzag channels with circular cross-section was analyzed by Computational Fluid Dynamics (CFD). The standard K-Ꜫ turbulent scalable wall functions were used for modeling. The wall temperature was assumed constant 353 K and water was used as the working fluid. The zigzag serpentine channels with bend angles of 5 - 45° were studied for turbul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002